Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Gersande Lena, ${ }^{\text {a }}$ Emmanuel Wenger, ${ }^{\text {b }}$ Gilles Guichard ${ }^{\text {a* }}$ and Claude Didierjean ${ }^{\text {b }}$ *
${ }^{\mathrm{a}}$ Immunologie et Chimie Thérapeutiques, UPR 9021 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue Descartes, 67000 Strasbourg, France, and ${ }^{\mathbf{b}}$ Laboratoire de Cristallographie et Modélisation des Matériaux Minéraux et Biologiques (LCM3B), UMR n ${ }^{\circ}$ 7036, Université Henri Poincaré, Nancy I, Faculté des Sciences, BP 239, 54506 Vandoeuvre lès Nancy Cedex, France

Correspondence e-mail:
g.guichard@ibmc.u-strasbg.fr,
claude.didierjean@lcm3b.uhp-nancy.fr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.117$
Data-to-parameter ratio $=9.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
10-Methyl-8,9,10,11,11a,12-hexahydro-5H,7H-iso-quinolino[3,2-g][1,3,5]triazepine-7,11-dione

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$, the triazepane ring adopts a twist-boat conformation and the piperidine ring adopts a boat conformation. The molecular packing is stabilized by $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \pi$ and van der Waals interactions.

Comment

We recently developed a method of parallel solution-phase synthesis and presented the first biological applications of a small pilot library of structurally diverse 1,3,5-triazepane-2,6diones, a novel dipeptide-derived skeleton (Lena et al., 2006). Our interest in designing and evaluating the 1,3,5-triazepane-2,6-dione scaffold stemmed from the remarkable biological activities exhibited by molecules with diazepine and triazepine skeletons, including seven-membered cyclic ureas. Here, we present the X-ray crystal structure of the tricyclic title compound, cyclo(L-TicgSar-CO), (I), prepared from Boc-TicSar-OH in only four steps with an overall yield of 45% [Tic is 1,2,3,4-L-tetrahydroisoquinoline-3-carboxylic acid, Sar is sarcosine and $g=$ gem, refers to the 2 -alkyl gem-diamino derivative of the corresponding amino acid according to the nomenclature proposed by Chorev \& Goodman (1993)].

(I)

Compound (I) crystallizes in the orthorhombic space group $P 2_{1} 2_{1} 2_{1}$ with two molecules in the asymmetric unit (Fig. 1). Molecule A refers to atoms labelled $\mathrm{C} 1 A-\mathrm{C} 13 A$ and molecule B refers to atoms labelled $\mathrm{C} 1 B-\mathrm{C} 13 B$. All bond distances and angles fall in normal ranges (Allen et al., 1987) and are in agreement with the geometry of similar 1,3,5-triazepane-2,6diones (Lena et al., 2006). The S configuration of the C atom at the 2-position of the seven-membered ring was assumed from the precursor Boc-L-Tic OH compound.

The most obvious difference between the independent molecules is the planarity of the amide N atom: the distance of atom $\mathrm{N} 2 A$ from the plane defined by atoms $\mathrm{C} 2 A, \mathrm{C} 3 A$ and $\mathrm{C} 4 A$ is 0.159 (3) \AA in molecule A, and the corresponding distance in molecule B is 0.031 (3) \AA. This difference is probably due to the crystal packing, which affords different

Received 5 December 2005
Accepted 23 December 2005

Figure 1
The molecular structures of the two independent molecules of (I), showing the atomic numbering scheme and 25% probability displacement ellipsoids. H atoms, except those of the NH and asymmetric CH groups, have been omitted for clarity.
neigbours for the amide N atom of molecules A and B. Indeed, the peptide plane defined by $\mathrm{C} 2 A / \mathrm{N} 2 A / \mathrm{C} 4 A / \mathrm{C} 5 A$ is in a stacking interaction with the urea group (defined by N1B/ $\mathrm{C} 1 B / \mathrm{O} 1 B / \mathrm{N} 3 B$) of a symmetry-related molecule. In contrast, the equivalent peptide plane ($\mathrm{C} 2 B / \mathrm{N} 2 B / \mathrm{C} 4 B / \mathrm{C} 5 B$) in molecule B is sandwiched between a urea group and a benzene ring (defined by $\mathrm{N} 1 A / \mathrm{C} 1 A / \mathrm{O} 1 A / \mathrm{N} 3 A$ and $\mathrm{C} 7 A / \mathrm{C} 8 A / \mathrm{C} 9 A /$ $\mathrm{C} 10 A / \mathrm{C} 11 A / \mathrm{C} 12 A$, respectively) from two symmetry-related molecules.

The triazepane ring adopts a twist-boat conformation, TB (Boessenkool \& Boyens, 1980), similar to those observed in the crystal structures of carbazepine (Hempel et al., 2005; Lisgarten et al., 1989). Thus, the seven-menbered ring consists of two nearly planar halves, $\mathrm{C} 2 / \mathrm{N} 2 / \mathrm{C} 4 / \mathrm{C} 5$ and $\mathrm{C} 2 / \mathrm{N} 1 / \mathrm{C} 1 / \mathrm{N} 3 /$ C5. In molecule A, the r.m.s. deviations of the fitted atoms from these two planes are 0.06 and $0.05 \AA$, respectively, while in molecule B, the equivalent r.m.s. deviations are 0.005 and $0.03 \AA$, respectively. The dihedral angle between the two halves is 119.1 (1) ${ }^{\circ}$ in molecule A and $119.5(1)^{\circ}$ in molecule B. Both independent piperidine rings are in a boat conformation, with atoms C6 A and C13 A displaced by 0.570 (4) and 0.401 (4) \AA, respectively, from the mean plane defined by $\mathrm{N} 3 A / \mathrm{C} 5 A / \mathrm{C} 7 A / \mathrm{C} 12 A$ in molecule A, and with atoms $\mathrm{C} 6 B$ and C13B displaced by 0.561 (4) and 0.631 (4) \AA, respectively, from the mean plane defined by $\mathrm{N} 3 B / \mathrm{C} 5 B / \mathrm{C} 7 B / \mathrm{C} 12 B$ in molecule B.

In the crystal structure of (I), the molecules are linked by $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$ hydrogen bonds (Table 1 and Fig. 2), exhibiting the graph-set motif $C(6)$ (Bernstein et al., 1995). Molecules A form chains running along the [100] direction and molecules B form chains running along the [010] direction. Weak hydrogen bonds of the form $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ link chains of molecules A with chains of molecules B. The shortest interactions are listed in Table 1. All other intermolecular interactions correspond to van der Waals contacts.

Figure 2
Part of the crystal structure of (I), showing the $C(6)$ chains along [100] and [010]. Intermolecular hydrogen bonds are shown as dashed lines. H atoms have been omitted.

Experimental

The title compound was prepared in four steps from Boc-L-TicSar$\mathrm{OH}(3.76 \mathrm{~g})$ in 45% overall yield, as previously described by Lena et al. (2006), and was crystallized by slow evaporation from a mixture of dichloromethane-diisopropyl ether (5:1 v / v).

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$
$M_{r}=245.28$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=12.1766$ (2) А
$b=12.5948$ (2) \AA
$c=15.4676$ (3) A
$V=2372.14(7) \AA^{3}$
$Z=8$
$D_{x}=1.374 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Bruker Nonius KappaCCD areadetector diffractometer ω scans
14659 measured reflections
3144 independent reflections 2706 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.117$
$S=1.05$
3144 reflections
326 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation
Cell parameters from 14659 reflections
$\theta=1.0-27.9^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.6 \times 0.6 \times 0.5 \mathrm{~mm}$

$$
\begin{aligned}
& R_{\text {int }}=0.04 \\
& \theta_{\max }=27.9^{\circ} \\
& h=-16 \rightarrow 16 \\
& k=-16 \rightarrow 16 \\
& l=-20 \rightarrow 20
\end{aligned}
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.061 P)^{2}\right. \\
& \quad+0.3973 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Hydrogen-bond geometry ($\left(\mathrm{A},{ }^{\circ}\right)$.
$C g$ is the centroid of the benzene ring of molecule A.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$	
$\mathrm{~N} 1 A-\mathrm{H} 1 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$	0.86	2.11	$2.967(3)$	171	
$\mathrm{~N} 1 B-\mathrm{H} 1 B \cdots \mathrm{O} 2 B^{\mathrm{ii}}$	0.86	2.02	$2.827(3)$	156	
$\mathrm{C} 2 B-\mathrm{H} 3 B \cdots \mathrm{O} 1 A^{\text {iii }}$	0.97	2.48	$3.239(3)$	135	
$\mathrm{C} 3 B-\mathrm{H} 4 B \cdots C g^{\text {iv }}$	0.97	2.87	$3.700(3)$	145	
Symmetry codes:	(i)	$x+\frac{1}{2},-y+\frac{3}{2},-z+2 ;$	(ii)	$-x, y-\frac{1}{2},-z+\frac{3}{2} ;$	(iii)
$x-\frac{1}{2},-y+\frac{3}{2},-z+2 ;$ (iv) $-x+1, y-\frac{1}{2},-z+\frac{1}{2}$.					

Because of the lack of any significant anomalous dispersion effects, the absolute configuration could not be determined from the diffraction experiment and Friedel pairs were merged prior to refinement. All H atoms were placed in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.97 \AA$ and an $\mathrm{N}-\mathrm{H}$ distance of $0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ fixed at $1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic, methine and methylene groups, at $1.2 U_{\text {eq }}(\mathrm{N})$ for the $\mathrm{N}-\mathrm{H}$ group and at $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl groups.

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: HKL (Otwinowski \& Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); soft-
ware used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The authors thank the Service Commun de Diffraction X sur Monocristaux (Université Henri Poincaré, Nancy I) for providing access to crystallographic experimental facilities.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Boessenkool, I. K. \& Boyens, J. C. A. (1980). J. Cryst. Mol. Struct. 10, 11-18.
Chorev, M. \& Goodman, M. (1993). Acc. Chem. Res. 26, 266-273.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Hempel, A., Norman, C., Camerman, A. \& Mastropaolo, D. (2005). Acta Cryst. E61, o1313-o1315.
Lena, G., Lallemand, E., Gruner, A. C., Roussel, S., Schaffner, A.-P., Aubry, A., Franetich, J.-F., Mazier, D., Landau, I., Briand, J.-P., Diderjean, C., Rénia, L. \& Guichard, G. (2006). In preparation.
Lisgarten, J. N., Palmer, R. A. \& Saldanha, J. W. (1989). Acta Cryst. C45, 656658.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

[^0]: © 2006 International Union of Crystallography All rights reserved

